Loading…

Experimental visualization of aerodynamic sound sources using parallel phase-shifting interferometry

Aerodynamic sound is one of the causes of noise in high-speed trains, automobiles, and wind turbines. To investigate the characteristics of aerodynamic sound generation, measurements around the sound sources are required. Aerodynamic sound is typically measured using microphones. However, microphone...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2020-09, Vol.61 (9), Article 206
Main Authors: Tanigawa, Risako, Yatabe, Kohei, Oikawa, Yasuhiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aerodynamic sound is one of the causes of noise in high-speed trains, automobiles, and wind turbines. To investigate the characteristics of aerodynamic sound generation, measurements around the sound sources are required. Aerodynamic sound is typically measured using microphones. However, microphones cannot capture the near-field of aerodynamic sound because they become new noise sources inside the air flow. To observe the aerodynamic sound near-field, we performed two-dimensional visualization of aerodynamic sound using an optical method. The optical method used in this research, parallel phase-shifting interferometry (PPSI), can detect the pressure within the measurement area as variations of the phase of light. PPSI can therefore visualize the pressure fields. We visualized both the sound pressure and flow components of the sound generated by flow around a square cylinder and flat plates. The visualized pressure fields are provided as animations in the online resources. Analysis of the sound and flow component time variations confirmed the correlations between them. Graphic abstract
ISSN:0723-4864
1432-1114
DOI:10.1007/s00348-020-03038-x