Loading…
Portable Hardness Tester for Instrumental Indentation
An instrument capable of assessing the hardness of materials by instrumental indentation under industrial-production conditions, including pipelines and parts of working mechanisms (bridges, railroad tracks, ship mechanisms, and other products), which operate outdoors, is described. The key componen...
Saved in:
Published in: | Surface investigation, x-ray, synchrotron and neutron techniques x-ray, synchrotron and neutron techniques, 2020-07, Vol.14 (4), p.846-850 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An instrument capable of assessing the hardness of materials by instrumental indentation under industrial-production conditions, including pipelines and parts of working mechanisms (bridges, railroad tracks, ship mechanisms, and other products), which operate outdoors, is described. The key components of the device are: a load-applying element (electromagnetic actuator), a displacement sensor (a capacitive sensor mounted on the working rod) and an indenter (a Berkovich diamond tip with a diameter of 500 μm and a radius of 100 nm). The largest force that can be applied to the sample is 10 N, and the maximum movement of the indenter reaches 150 μm. For the convenience of measuring both bulk and thin samples, a portable hardness tester is equipped with two different nozzles. The main peculiar feature of the device is measurement of the hardness and the Young’s modulus of the material within a single working cycle. The device is tested on various materials: steels of grades 40Cr13 and 08Cr18N10T (including samples that underwent aging), aluminum, fused silica, polycarbonate, and laminated chipboard. The roughness of the tested surfaces and the range of loads required to carry out instrumental indentation with a portable device are determined as well. The values of the hardness and elastic modulus are consistent with data obtained by means of laboratory hardness testers. |
---|---|
ISSN: | 1027-4510 1819-7094 |
DOI: | 10.1134/S102745102003026X |