Loading…

Material Point Method Simulation of the Equation of State of Polymer-Bonded Explosive under Impact Loading at Mesoscale

Mesoscale simulation using the material point method (MPM) was conducted to study the pressure–volume (PV) variations of Octahydro-1,3,5,7-Tetranitro-1,2,3,5-Tetrazocine (HMX)/Estane polymer-bonded explosive (PBX) under impact loading. The PV isotherms and Hugoniot data were calculated for the diffe...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2020-08, Vol.8 (8), p.983
Main Authors: Ge, Siyu, Zhang, Wenying, Sang, Jian, Yuan, Shuai, Lo, Glenn V., Dou, Yusheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mesoscale simulation using the material point method (MPM) was conducted to study the pressure–volume (PV) variations of Octahydro-1,3,5,7-Tetranitro-1,2,3,5-Tetrazocine (HMX)/Estane polymer-bonded explosive (PBX) under impact loading. The PV isotherms and Hugoniot data were calculated for the different porosities and binder volume fractions. The PV isotherms were used to determine the parameters for the Birch– Murnaghan equation of state (EOS) for the PBX. From the EOS, the isothermal bulk modulus (K0) and its pressure derivative (K′0) were calculated. Additionally, the pseudo particle velocity and pseudo shock velocity variations were used to obtain the bulk wave speed c and dimensionless coefficient s for the Mie–Grüneisen EOS. The simulations provide an alternative approach for determining an EOS that is consistent with experimental observations.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr8080983