Loading…

A coupled thermo-mechanical model of friction stir welding

A coupled thermo-mechanical model was developed to study the temperature fields, the plunge force and the plastic deformations of Al alloy 2024-T351 under different rotating speed: 350, 400 and 450 rpm, during the friction stir welding (FSW) process. Three-dimensional FE model has been developed in...

Full description

Saved in:
Bibliographic Details
Published in:Thermal science 2012, Vol.16 (2), p.527-534
Main Authors: Veljic, Darko, Perovic, Milenko, Sedmak, Aleksandar, Rakin, Marko, Trifunovic, Miroslav, Bajic, Nikola, Bajic, Darko
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A coupled thermo-mechanical model was developed to study the temperature fields, the plunge force and the plastic deformations of Al alloy 2024-T351 under different rotating speed: 350, 400 and 450 rpm, during the friction stir welding (FSW) process. Three-dimensional FE model has been developed in ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and the Coulomb?s Law of friction. Numerical results indicate that the maximum temperature in the FSW process is lower than the melting point of the welding material. The temperature filed is approximately symmetrical along the welding line. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface. With increasing rotation speed, the low plastic strain region is reduced. When the rotational speed is increased, the plunge force can be reduced. Regions with high equivalent plastic strains are observed which correspond to the nugget and the flow arm. nema
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI110729012V