Loading…

Fatigue behaviour of the bond interface between carbon fibre‐reinforced polymer sheets and concrete

Externally bonded carbon fibre‐reinforced polymers (CFRPs) have been applied to retrofit and strengthen civil structures. In this study, four‐point bending beams were manufactured and tested to examine the fatigue behaviour of the CFRP–concrete interface. The results indicated that the specimens exh...

Full description

Saved in:
Bibliographic Details
Published in:Fatigue & fracture of engineering materials & structures 2020-09, Vol.43 (9), p.2116-2129
Main Authors: Wei, Mu‐Wang, Xie, Jian‐He, Huang, Pei‐Yan, Huang, Kun‐Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Externally bonded carbon fibre‐reinforced polymers (CFRPs) have been applied to retrofit and strengthen civil structures. In this study, four‐point bending beams were manufactured and tested to examine the fatigue behaviour of the CFRP–concrete interface. The results indicated that the specimens exhibited debonding failure in the concrete beneath the adhesive layer under static loading. However, when cyclic loads were imposed on the small beams, debonding failure may occur in the adhesive layer. Moreover, fitting expressions were proposed to predict the shear stress–slip relationship between the CFRP sheets and concrete and the flexural strength of the CFRP‐strengthened beams under static loads, and good agreement with the test data was obtained. Finally, a fatigue life prediction model was also presented to capture the fatigue life of the CFRP–concrete interface under cyclic loads. The calculation results showed that the fatigue strength of the CFRP–concrete bond interface was approximately 65% of the ultimate load capacity.
ISSN:8756-758X
1460-2695
DOI:10.1111/ffe.13291