Loading…

Full-Scale Measurements of Wind Pressures on a Low-Rise Building during Typhoons and Comparison with Wind Tunnel Test Results and Aerodynamic Database

AbstractThis study investigated wind-induced pressures on an instrumented low-rise building with gable roof and roof overhang during Typhoons Mujigae and Sarika by means of full-scale measurements. Then, detailed wind tunnel tests on a 1∶100 scale model of the instrumented building were performed un...

Full description

Saved in:
Bibliographic Details
Published in:Journal of structural engineering (New York, N.Y.) N.Y.), 2020-10, Vol.146 (10)
Main Authors: Wang, X. J, Li, Q. S, Yan, B. W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AbstractThis study investigated wind-induced pressures on an instrumented low-rise building with gable roof and roof overhang during Typhoons Mujigae and Sarika by means of full-scale measurements. Then, detailed wind tunnel tests on a 1∶100 scale model of the instrumented building were performed under different upstream exposure conditions. Moreover, cross-comparisons between the field measurements, wind tunnel testing results, and aerodynamic database for low-rise buildings established by the Tokyo Polytechnic University (TPU) were made for validation purposes. The comparative study illustrates that the mean and RMS wind pressure coefficients on the roof of the low-rise building among the field measurements, model test results, and aerodynamic database are in reasonable agreement, and the wind tunnel modeling methodology could reproduce the minimum pressure coefficient in terms of the ratios of peak wind pressures to maximum dynamic pressures. An improved peak pressure estimate approach was proposed, and its effectiveness was verified against the field measurements. The combined study of full-scale measurement, wind tunnel testing, and usage of aerodynamic database aimed to further the understanding of wind effects on typical low-rise buildings during typhoons and improve their wind-resistant design.
ISSN:0733-9445
1943-541X
DOI:10.1061/(ASCE)ST.1943-541X.0002769