Loading…

18F-2-fluoro-2-deoxyglucose uptake in white adipose tissue on pediatric oncologic positron emission tomography (PET)/computed tomography (CT)

Background Altered biodistribution of [F-18]2-fluoro-2-deoxyglucose (FDG) is sometimes encountered in pediatric patients undergoing chemotherapy for lymphoma on post-induction positron emission tomography (PET) imaging. A characteristic pattern of increased FDG uptake in white adipose tissue can be...

Full description

Saved in:
Bibliographic Details
Published in:Pediatric radiology 2020-04, Vol.50 (4), p.524-533
Main Authors: Wong, Ka Kit, Sedig, Laura K., Bloom, David A., Hutchinson, Raymond J., Shulkin, Barry L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Altered biodistribution of [F-18]2-fluoro-2-deoxyglucose (FDG) is sometimes encountered in pediatric patients undergoing chemotherapy for lymphoma on post-induction positron emission tomography (PET) imaging. A characteristic pattern of increased FDG uptake in white adipose tissue can be seen, particularly in the buccal regions, body wall and gluteal regions, with a shift of radiotracer away from the blood pool and liver. This altered biodistribution has been attributed to effects of corticosteroids in pediatric and adult patients and is important to recognize because of its potential for limiting the diagnostic quality of the PET scan and interfering with therapeutic response assessment. Objective In contrast to the well-known metabolically active brown fat seen on up to one-third of pediatric PET scans, white fat is usually non-metabolically active. We sought to determine the incidence of altered distribution of FDG in subcutaneous white adipose tissue in pediatric patients undergoing PET imaging and to assess the association with corticosteroid use. Materials and methods We reviewed the medical records and imaging for four children in whom altered biodistribution in white adipose tissue was present on post-induction FDG PET/CT, identified during routine clinical practice. All four were receiving corticosteroids as part of their chemotherapy. We then retrospectively reviewed oncology FDG PET/CT scans over a 2-year period (1,361 scans in 689 patients) to determine the incidence of uptake in white fat by qualitative visual assessment. In the children identified with altered biodistribution, we measured maximum standard uptake value (SUV max ) and mean standard uptake value (SUV mean ) in areas of subcutaneous white fat, the buccal regions, body wall or gluteal soft-tissue regions, liver and blood pool. We reviewed all medical records, including medication lists. We summarize the relevant clinical and imaging findings of 13 pediatric patients, including the 4 index patients. Results We determined the incidence of FDG uptake in white fat to be rare, found in 9 of 1,361 (0.6%) PET scans performed for pediatric cancer evaluation. FDG uptake was increased in subcutaneous adipose tissue, particularly in the buccal regions, body wall and gluteal regions, with a shift of radiotracer away from the blood pool and liver. The degree of increased uptake in peripheral white fat varied from marked to mild, and the biodistribution was distinct from that of brow
ISSN:0301-0449
1432-1998
DOI:10.1007/s00247-019-04574-3