Loading…

A New High Perihelion Trans-Plutonian Inner Oort Cloud Object: 2015 TG387

Inner Oort cloud objects (IOCs) are trans-Plutonian for their entire orbits. They are beyond the strong gravitational influences of the known planets, yet close enough to the Sun that outside forces are minimal. Here we report the discovery of the third known IOC after Sedna and 2012 VP113, called 2...

Full description

Saved in:
Bibliographic Details
Published in:The Astronomical journal 2019-04, Vol.157 (4), p.139
Main Authors: Sheppard, Scott S., Trujillo, Chadwick A., Tholen, David J., Kaib, Nathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inner Oort cloud objects (IOCs) are trans-Plutonian for their entire orbits. They are beyond the strong gravitational influences of the known planets, yet close enough to the Sun that outside forces are minimal. Here we report the discovery of the third known IOC after Sedna and 2012 VP113, called 2015 TG387. This object has a perihelion of 65 1 au and semimajor axis of 1170 70 au. The longitude of perihelion angle, , for 2015 TG387 is between that of Sedna and 2012 VP113 and thus similar to the main group of clustered extreme trans-Neptunian objects (ETNOs), which may be shepherded into similar orbital angles by an unknown massive distant planet called Planet X, or Planet Nine. The orbit of 2015 TG387 is stable over the age of the solar system from the known planets and Galactic tide. When including outside stellar encounters over 4 Gyr, 2015 TG387's orbit is usually stable, but its dynamical evolution depends on the stellar encounter scenarios used. Surprisingly, when including a massive Planet X beyond a few hundred au on an eccentric orbit that is antialigned in longitude of perihelion with most of the known ETNOs, we find that 2015 TG387 is typically stable for Planet X orbits that render the other ETNOs stable as well. Notably, 2015 TG387's argument of perihelion is constrained, and its longitude of perihelion librates about 180° from Planet X's longitude of perihelion, keeping 2015 TG387 antialigned with Planet X over the age of the solar system.
ISSN:0004-6256
1538-3881
1538-3881
DOI:10.3847/1538-3881/ab0895