Loading…

Switched-Capacitor-Based Neutral-Point-Clamped Quasi-Switched Boost Multilevel Inverter

Reliable and efficient inverters are becoming essential in the current scenario of electrical power generation from renewable energy sources. Owing to inherent buck–boost ability and shoot-through immunity, the single-stage inverters are getting solid evaluation as compared to conventional inverters...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal for science and engineering (2011) 2020-03, Vol.45 (3), p.1765-1775
Main Authors: Ajaykumar, T., Patne, Nita R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reliable and efficient inverters are becoming essential in the current scenario of electrical power generation from renewable energy sources. Owing to inherent buck–boost ability and shoot-through immunity, the single-stage inverters are getting solid evaluation as compared to conventional inverters in the present era of renewable energy generation. However, the maximum attainable boosting of the single-stage inverters is limited by means of device stresses and spectral performance. This paper proposes a switched-capacitor-based quasi-switched boost neutral-point-clamped single-stage multilevel inverter. It is able to make desired AC output voltage in a single-stage conversion from a low-level DC voltage engendered by renewable sources such as fuel cell and PV cell. Further, it can attain high voltage gain at reduced voltage stresses on the switches, capacitors and diodes by cascading multiple switched-capacitor cells to quasi-switched boost network. The working principle and steady-state analysis of proposed topology are presented in order to obtain mathematical relation between input and output voltages. The effectiveness of the proposed inverter has been compared with other impedance-source multilevel inverters in terms of voltage gain, boosting capability, voltage stresses and efficiency. The operation of the proposed system is verified by MATLAB simulation. Also, a laboratory prototype is built and tested to verify the theoretical analysis.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-019-04254-2