Loading…

Photochemical dynamics under incoherent illumination: Light harvesting in self-assembled molecular J-aggregates

Transport phenomena in organic, self-assembled molecular J-aggregates have long attracted a great deal of attention due to their potential role in designing novel organic photovoltaic devices. A large number of theoretical and experimental studies have been carried out describing excitonic energy tr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2020-02, Vol.152 (7), p.074304-074304
Main Authors: Morales-Curiel, Luis Felipe, de J, León-Montiel Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transport phenomena in organic, self-assembled molecular J-aggregates have long attracted a great deal of attention due to their potential role in designing novel organic photovoltaic devices. A large number of theoretical and experimental studies have been carried out describing excitonic energy transfer in J-aggregates under the assumption that excitons are induced by a coherent laser-light source or initialized by a localized excitation on a particular chromophore. However, these assumptions may not provide an accurate description to assess the efficiency of J-aggregates, particularly as building blocks of organic solar cells. Under natural conditions, J-aggregates would be subjected to an incoherent source of light (as is sunlight), which would illuminate the whole photosynthetic complex rather than a single molecule. In this work, we present the first study of the efficiency of photosynthetic energy transport in self-assembled molecular aggregates under incoherent sunlight illumination. By making use of a minimalistic model of a cyanine dye J-aggregate, we demonstrate that long-range transport efficiency is enhanced when exciting the aggregate with incoherent light. Our results thus support the conclusion that J-aggregates are, indeed, excellent candidates for devices where efficient long-range incoherently induced exciton transport is desired, such as in highly efficient organic solar cells.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5130572