Loading…

Cloning and expression analysis of the StCUL1 gene in potato

The Cullin-RING E3 ubiquitin ligase (CRL) complex is the most common E3 ligase, and the SCF complex (CRL1) has the most diverse functions. Cullin1(CUL1) is a scaffolding protein for assembly of the complex. SCF has been shown to participate in the non-biological stress response pathways. In this stu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant biochemistry and biotechnology 2019-12, Vol.28 (4), p.460-469
Main Authors: Pang, Peng-Xiang, Shi, Li, Wang, Xiao-Juan, Chang, Yan-Nan, Luo, Yong-Ping, Feng, Jin-Lin, Eri, Hemu, Gao, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Cullin-RING E3 ubiquitin ligase (CRL) complex is the most common E3 ligase, and the SCF complex (CRL1) has the most diverse functions. Cullin1(CUL1) is a scaffolding protein for assembly of the complex. SCF has been shown to participate in the non-biological stress response pathways. In this study, a classic CUL1 protein was identified in Solanum tuberosum , StCUL1 . A full-length cDNA of the StCUL1 gene was obtained from ED13 (a potato variety) by Ralstonia solanacearum inoculation using the RACE method. Sequence analysis indicated that the gene comprised 2662 bp, with an open reading frame of 2229 bp encoding 743 amino acids. The expression levels of the StCUL1 gene in potato treated with R. solanacearum and exogenous hormones (such as salicylic acid, jasmonic acid methyl ester and abscisic acid) at different time points were determined by real-time PCR. The results indicated that StCUL1 was induced not only by pathogenic bacteria, but also by exogenous hormones, with sustained high expression. However, there were some differences in the modes of expression. Tissue localization analysis indicated that its expression was tissue specific, and it was mainly in the phloem of the vascular system of stems and leaves.
ISSN:0971-7811
0974-1275
DOI:10.1007/s13562-019-00495-2