Loading…

Comparative Analysis of Toxicity Induced by Different Synthetic Silver Nanoparticles in Albino Mice

Use of nanoparticles for various industrial and biomedical applications has emerged in recent years rapidly, but their accumulation in the environment has raised concerns for their ecotoxicological profile. Instead of halting their use, emphasis should be laid to the development of safer nanoparticl...

Full description

Saved in:
Bibliographic Details
Published in:BioNanoScience 2019-09, Vol.9 (3), p.553-563
Main Authors: Yaqub, Atif, Ditta, Sarwar Allah, Anjum, Khalid Mahmood, Tanvir, Fouzia, Malkani, Naila, Yousaf, Muhammad Zubair
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Use of nanoparticles for various industrial and biomedical applications has emerged in recent years rapidly, but their accumulation in the environment has raised concerns for their ecotoxicological profile. Instead of halting their use, emphasis should be laid to the development of safer nanoparticles. We prepared silver nanoparticles (AgNPs) by chemical synthesis as well by green synthesis method using Ocimum tenuiflorum L. plant. Characterization of green synthesized silver nanoparticles (G. AgNPs) and chemically synthesized silver nanoparticles (C. AgNPs) was performed; UV-visible confirmed the optical absorption peaks at 425 nm (G. AgNPs) and 416 nm (C. AgNPs). SEM imaging confirmed the spherical shaped G. AgNPs (40–60 nm) and C. AgNPs (30–40 nm) with average sizes. FTIR analysis of G. AgNPs confirmed that alkene and aromatic compounds played an important role as capping and reducing agent. We also attempted to evaluate the toxicity profile using a mammalian model, male albino mice (BALB/c)x LD50 of the G. AgNPs and C. AgNPs for mice were found to be 812 mg/kg and 575 mg/kg of the body weight respectively. Liver enzymes were studied from liver tissue and blood serum samples collected from G. AgNP-treated and C. AgNP (100 mg/kg dose)-treated mice for 21 days. We observed a significant decrease in catalase (72.8 versus 86) and GST (0.4 versus 0.32) for G. AgNPs vs C. AgNPs respectively; whereas an increase of SOD is reported (3.05 vs 2.26 respectively). Hence, the development of nanoparticles by green synthesis may be the safer, cost-effective, and eco-friendly option as compared to chemical synthesis.
ISSN:2191-1630
2191-1649
DOI:10.1007/s12668-019-00642-y