Loading…

Numerical and experimental study of the impact of conical chimney angle on the thermodynamic characteristics of a solar chimney power plant

The goal of this paper is to study and optimize the conical chimney angle (α) of a divergent solar chimney power plant (DSCPP) by using CFD technique. The local airflow characteristics were analyzed in four configurations with different conical angles α = 0°, α = 3°, α = 6° and α = 9°. The first des...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2019-10, Vol.233 (5), p.1185-1199
Main Authors: Nasraoui, Haythem, Driss, Zied, Ayadi, Ahmed, Bouabidi, Abdallah, Kchaou, Hedi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of this paper is to study and optimize the conical chimney angle (α) of a divergent solar chimney power plant (DSCPP) by using CFD technique. The local airflow characteristics were analyzed in four configurations with different conical angles α = 0°, α = 3°, α = 6° and α = 9°. The first design is validated experimentally by using a pilot prototype build at the National School of Engineers of Sfax, Tunisia. In addition, some experimental results of the temperature, the velocity and the power output were presented during a typical day. A novel mathematical correlation was developed to prove the effect of the conical angle and the DSCPP scale on the power output. In fact, the relationship between the optimum conical angle and the system scale was performed based on both quadratic and cubic regressions. The computational results ensure that the conical chimney angle presents a parabolic tendency with the turbulence airflow characteristics and the power output. The performance of the DSCCP was degraded since the conical angle is greater than α = 3°. Furthermore, the optimum angle decreases with an increasing system scale. A commercial solar chimney with a conical angle around α = 1° presents an efficient system.
ISSN:0954-4089
2041-3009
DOI:10.1177/0954408919859160