Loading…

Improving compressive strength of high modulus carbon-fiber reinforced polymeric composites through fiber hybridization

There has been a strong demand in using high-modulus (HM) carbon-fiber composites potentially enabling lightweight aircraft structures with significant weight savings. However, extremely low fiber-direction compressive strength has been a well-recognized weakness of the HM composites, prohibiting th...

Full description

Saved in:
Bibliographic Details
Published in:International journal of engineering science 2019-09, Vol.142, p.145-157
Main Authors: Makeev, Andrew, Ghaffari, Sarvenaz, Seon, Guillaume
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There has been a strong demand in using high-modulus (HM) carbon-fiber composites potentially enabling lightweight aircraft structures with significant weight savings. However, extremely low fiber-direction compressive strength has been a well-recognized weakness of the HM composites, prohibiting their implementation in aircraft platforms. Hybridizing fibers with varying moduli provides an innovative means for improving the fiber-direction compressive strength of composites. This has been implemented by comingling intermediate-modulus (IM) and high-modulus (HM) carbon fibers in HM carbon fiber-reinforced polymer (CFRP) toughened with nano-silica. Comingling IM and HM fibers at the filament level in addition to the matrix nano-sized structural reinforcement throughout the composite, increases shear modulus to axial modulus ratio of the composite material, thus improving microstructural stability likely governing the fiber-direction compressive strength behavior. The basis for this new material design stems from the fact that fiber-direction compressive strength increases with the shear modulus to axial modulus ratio of composites across different fiber and resin combinations. The results demonstrate that the new hybrid HM composite fiber-direction compressive strength achieves that of IM legacy composites but with more than 30% higher axial modulus.
ISSN:0020-7225
1879-2197
DOI:10.1016/j.ijengsci.2019.06.004