Loading…

Sand erosion in axial flow conditions

A mathematical model of sand erosion in axial flow conditions is presented. The basic mass balance equations and sand erosion constitutive equation were given in Vardoulakis et al. (1996). As opposed to reference Vardoulakis et al. (1996), we consider here the extreme case where convection is null a...

Full description

Saved in:
Bibliographic Details
Published in:Transport in porous media 2001-11, Vol.45 (2), p.267-281
Main Authors: VARDOULAKIS, I, PAPANASTASIOU, P, STAVROPOULOU, M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mathematical model of sand erosion in axial flow conditions is presented. The basic mass balance equations and sand erosion constitutive equation were given in Vardoulakis et al. (1996). As opposed to reference Vardoulakis et al. (1996), we consider here the extreme case where convection is null and hydrodynamic dispersion dominates. In addition, Brinkman's extension of Darcy's law is adopted to account for a smooth transition between channel flow and Darcian flow. The set of governing PDE's is presented in dimensionless form and is solved numerically. In concordance with the basic constitutive equation for erosion kinetics, the analysis shows that erosion progresses in time as a ‘front’ of high transport concentration. This result is justified by the highly non-linear character of the erosion source term which dominates in the diffusion-like governing equation.
ISSN:0169-3913
1573-1634
DOI:10.1023/A:1012035031463