Loading…

AEA-FCP: an adaptive energy-aware fixed clustering protocol for data dissemination in wireless sensor networks

Through the past years, wireless sensor networks (WSNs) have witnessed great efforts to improve its performance and efficiency in terms of energy consumption and network throughput. Among all efficiency aspects, the energy awareness has captured the significant attention of current researchers. In t...

Full description

Saved in:
Bibliographic Details
Published in:Personal and ubiquitous computing 2019-11, Vol.23 (5-6), p.819-837
Main Authors: Darabkh, Khalid A., Al-Jdayeh, Laith
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Through the past years, wireless sensor networks (WSNs) have witnessed great efforts to improve its performance and efficiency in terms of energy consumption and network throughput. Among all efficiency aspects, the energy awareness has captured the significant attention of current researchers. In this paper, we propose an adaptive energy-aware fixed clustering data dissemination protocol (AEA-FCP) for WSNs that mainly aims at minimizing and balancing the energy consumption among all nodes that are participating in such networks. In particular, this work proposes multiple novel mechanisms to achieve this goal. Firstly, a new approach is presented for the construction of clusters with balanced size and even distribution during the initial cluster head selection. Secondly, a novel scheme is introduced for distributing the cluster head task, dependent upon a node’s energy and location information within each cluster. Lastly, a multi-hop routing paradigm is employed to minimize the communication distances and save the nodes’ energy. The results of the simulation showed that our protocol’s performance surpasses other directly connected works in both continuous data and event-based applications.
ISSN:1617-4909
1617-4917
DOI:10.1007/s00779-019-01233-0