Loading…

Planar UWB Antenna with Double Band Rejection Capability Using Double Inclined ESRRs

This paper deals with elliptical split ring resonator (ESRR) loaded CPW-fed ultra wideband (UWB) printed monopole antenna (PMA) with dual band-notching at 5.2 and 6.9 GHz to notch WLAN and C-band wireless applications, respectively. The antenna is fabricated on duroid dielectric substrate with thick...

Full description

Saved in:
Bibliographic Details
Published in:Radioelectronics and communications systems 2019-03, Vol.62 (3), p.119-126
Main Authors: Ahmed, Ghidaa T., Elkorany, Ahmed S., Saleeb, Demyana A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with elliptical split ring resonator (ESRR) loaded CPW-fed ultra wideband (UWB) printed monopole antenna (PMA) with dual band-notching at 5.2 and 6.9 GHz to notch WLAN and C-band wireless applications, respectively. The antenna is fabricated on duroid dielectric substrate with thickness of 1.6 mm and ε r = 2.2. The antenna uses two ESRR with different dimensions to create dual band-notched characteristics. Details of the proposed antenna are presented along with simulated results. The effect of ESRR dimensions and position is examined. The ESRR is also rotated and the effect of this rotation in the notch frequency is also examined. Radiation patterns are simulated by HFSS and omnidirectional radiation patterns in the H -plane could be observed. The group delay is nearly stable in the UWB frequency range, except at the notch frequencies, which is distorted sharply. So, the proposed antenna is a good candidate for the modern UWB systems. Finite element method (FEM) and finite integration technique (FIT) are used to simulate the proposed structures through the usage of HFSS and CST. A very good agreement between both results has been obtained.
ISSN:0735-2727
1934-8061
DOI:10.3103/S0735272719030038