Loading…

Production of Motor Fuel from Lignocellulose in a Three-Stage Process (Review and Experimental Article)

A three-stage process for the production of motor fuel (MT) components from lignocellulosic raw materials is described. In the first, pretreatment stage, lignocellulose is subjected to hydrolysis with cellulases followed by fermentation of the resulting sugars into ethanol; then, dilute ethanol solu...

Full description

Saved in:
Bibliographic Details
Published in:Petroleum chemistry 2019, Vol.59 (1), p.11-23
Main Authors: Netrusov, A. I., Teplyakov, V. V., Tsodikov, M. V., Chistyakov, A. V., Zharova, P. A., Shalygin, M. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A three-stage process for the production of motor fuel (MT) components from lignocellulosic raw materials is described. In the first, pretreatment stage, lignocellulose is subjected to hydrolysis with cellulases followed by fermentation of the resulting sugars into ethanol; then, dilute ethanol solutions are concentrated by membrane vapor separation to obtain 70–80% solutions. At the third stage, aqueous ethanol solutions (water content 0–50%) in the presence of a Pd–Zn/Al 2 O 3 /MFI catalyst at 350°C and a space velocity of 0.6 h −1 are converted into alkanes, and С 3 –С 8 olefins and С 6 –C 12 aromatic compounds (MT components). It has been found that water in an amount of up to 30% in ethanol solutions effectively inhibits the detrimental hydrocarbon cracking and catalyst coking processes, thereby leading to a decrease in the formation of undesirable C 1 and C 2 products and an increase in the catalyst on-stream time to 100 h wherein the yield of the desired fraction is reduced only by 10–15%. The subsequent treatment of the catalyst surface with steam and hydrogen completely restores its catalytic activity.
ISSN:0965-5441
1555-6239
DOI:10.1134/S0965544119010110