Loading…

Investigations into solar flare effects using wavelet-based local intermittency measure

The present study analyzes the efficiency of local intermittency measure based on wavelet transforms in identifying solar flare effects on magnetograms. If we observe the flare-time features in geomagnetic components, most often, disturbances associated with other solar phenomena will enhance or mas...

Full description

Saved in:
Bibliographic Details
Published in:Acta geophysica 2019-04, Vol.67 (2), p.687-701
Main Authors: Gopinath, Sumesh, Prince, P. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study analyzes the efficiency of local intermittency measure based on wavelet transforms in identifying solar flare effects on magnetograms. If we observe the flare-time features in geomagnetic components, most often, disturbances associated with other solar phenomena will enhance or mask the solar flare signatures. Similarly, diurnal and high-latitude geomagnetic variabilities will suppress solar flare effects on magnetograms. The measurements of amplitudes taken directly from temporal variations of weak geomagnetic components have certain limitations regarding the identification of the proper base and peak values from which the deviation due to solar flare has to be measured. In such situations, local intermittency measure based on cross-wavelet analysis can be employed which could remarkably identify the flare effects, even if the signatures are weak or masked by other disturbance effects. The present study shows that local intermittency measure based on wavelet analysis could act as an alternate quantification technique for analyzing solar flare effects on geomagnetic activity.
ISSN:1895-6572
1895-7455
DOI:10.1007/s11600-019-00257-7