Loading…

The Cutting Parameter Optimization in Helical Milling of Ti Alloys with Small Diameter Tools and the Study of their Cutting Performance

Titanium alloys are widely used in modern aircraft manufacturing. The hole-making technology with high quality becomes a crucial aspect of aircraft assembly. Helical milling process has drawn much attention due to its high machining quality and efficiency. In this work, the cutting performance of sm...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2018-02, Vol.764, p.342-350
Main Authors: Li, Shi Peng, Tian, Li Cheng, Qin, Xu Da, Shang, Shuai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Titanium alloys are widely used in modern aircraft manufacturing. The hole-making technology with high quality becomes a crucial aspect of aircraft assembly. Helical milling process has drawn much attention due to its high machining quality and efficiency. In this work, the cutting performance of small diameter tools (3mm) in helical milling Ti alloy is studied. The parameters of spindle speed, tangential feed speed and pitch (axial feed per revolution) are optimized to reduce cutting force and processing time. The evolutions of the cutting force, burr size, hole side wall roughness and diameter with increasing hole number are investigated. Results show that burr size and hole side wall roughness are much lower than the requirement of aircraft assembly under the optimized parameters of 7000r/min (spindle speeds), 0.1mm (pitch), 0.02mm/tooth (tangential feed). Due to the poor stiffness and large deflection of small diameter tools, excessive hole diameter error is the most prominent problem to be concerned in helical milling process.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.764.342