Loading…

No Evidence for Accurate Visuomotor Memory: Systematic and Variable Error in Memory-Guided Reaching

The authors explored whether the motor system has access to highly accurate information about the aiming environment after visual occlusion. Participants (N = 14) reached to 1 of 3 midsagittal targets in 4 visual conditions (open-loop, brief-delay, 500-ms delay, and 2,000-ms delay). In all condition...

Full description

Saved in:
Bibliographic Details
Published in:Journal of motor behavior 2003-06, Vol.35 (2), p.127-133
Main Authors: Westwood, David A., Heath, Matthew, Roy, Eric A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The authors explored whether the motor system has access to highly accurate information about the aiming environment after visual occlusion. Participants (N = 14) reached to 1 of 3 midsagittal targets in 4 visual conditions (open-loop, brief-delay, 500-ms delay, and 2,000-ms delay). In all conditions, the aiming environment was first viewed for 2,000 ms. Movements were cued immediately after the initial viewing period in the open-loop and brief-delay conditions. Vision was not occluded until movement onset in the open-loop condition, whereas vision was occluded coincidentally with the movement cue in the brief-delay condition. In the 2 longer delay conditions, the movement was cued following a 500- or a 2,000-ms no-vision delay period. Participants overshot the target in the open-loop condition, but that tendency was significantly reduced in the 3 delay conditions. Moreover, end-point variability was greater in the 3 delay conditions than in the open-loop condition. A speed-accuracy tradeoff account could not explain the differences between open-loop and delayed reaching. Those findings suggest that the motor system does not have access to highly accurate information about the aiming environment for any appreciable period of time following visual occlusion, consistent with the view that the visuomotor system operates in real time.
ISSN:0022-2895
1940-1027
DOI:10.1080/00222890309602128