Loading…
A Bayesian approach to modelling subnational spatial dynamics of worldwide non-state terrorism, 2010–2016
Terrorism persists as a worldwide threat, as exemplified by the on-going lethal attacks perpetrated by Islamic State in Iraq and Syria, Al Qaeda in Yemen and Boko Haram in Nigeria. In response, states deploy various counterterrorism policies, the costs of which could be reduced through efficient pre...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2019-01, Vol.182 (1), p.323-344 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Terrorism persists as a worldwide threat, as exemplified by the on-going lethal attacks perpetrated by Islamic State in Iraq and Syria, Al Qaeda in Yemen and Boko Haram in Nigeria. In response, states deploy various counterterrorism policies, the costs of which could be reduced through efficient preventive measures. Statistical models that can account for complex spatiotemporal dependences have not yet been applied, despite their potential for providing guidance to explain and prevent terrorism. To address this shortcoming, we employ hierarchical models in a Bayesian context, where the spatial random field is represented by a stochastic partial differential equation. Our main findings suggest that lethal terrorist attacks tend to generate more deaths in ethnically polarized areas and in locations within democratic countries. Furthermore, the number of lethal attacks increases close to large cities and in locations with higher levels of population density and human activity. |
---|---|
ISSN: | 0964-1998 1467-985X |
DOI: | 10.1111/rssa.12384 |