Loading…

Tracking Local Mechanical Impact in Heterogeneous Polymers with Direct Optical Imaging

Structural heterogeneity defines the properties of many functional polymers and it is often crucial for their performance and ability to withstand mechanical impact. Such heterogeneity, however, poses a tremendous challenge for characterization of these materials and limits our ability to design the...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2018-12, Vol.130 (50), p.16623-16628
Main Authors: Filonenko, Georgy A., Lugger, Jody A. M., Liu, Chong, van Heeswijk, Ellen P. A., Hendrix, Marco M. R. M., Weber, Manuela, Müller, Christian, Hensen, Emiel J. M., Sijbesma, Rint P., Pidko, Evgeny A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structural heterogeneity defines the properties of many functional polymers and it is often crucial for their performance and ability to withstand mechanical impact. Such heterogeneity, however, poses a tremendous challenge for characterization of these materials and limits our ability to design them rationally. Herein we present a practical methodology capable of resolving the complex mechanical behavior and tracking mechanical impact in discrete phases of segmented polyurethane—a typical example of a structurally complex polymer. Using direct optical imaging of photoluminescence produced by a small‐molecule organometallic mechano‐responsive sensor we observe in real time how polymer phases dissipate energy, restructure, and breakdown upon mechanical impact. Owing to its simplicity and robustness, this method has potential in describing the evolution of complex soft‐matter systems for which global characterization techniques fall short of providing molecular‐level insight. Eine Sonde, sie alle zu sehen: Das komplexe Verhalten diskreter Phasen eines heterogenen Polymers kann durch robuste phosphoreszierende Mechanophore direkt abgebildet werden. Es wird gezeigt, dass Umlagerung, Zerlegung und Kristallisation harter Phasen charakteristische optische Reaktionsmuster aufweisen, die es ermöglichen, diese verschiedenen Deformationsmechanismen zu verfolgen und zu identifizieren.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201809108