Loading…

A kind of PCMs-based lightweight wallboards: Artificial controlled condition experiments and thermal design method investigation

Building envelopes integrating with phase change materials (PCMs) can achieve excellent thermal storage performance, which would benefit the establishment of comfortable indoor thermal environment and the reduction of building energy consumption. In the present paper, the thermal performance of PCMs...

Full description

Saved in:
Bibliographic Details
Published in:Building and environment 2018-10, Vol.144, p.194-207
Main Authors: Yang, Liu, Qiao, Yuhao, Liu, Yan, Zhang, Xiangrong, Zhang, Chen, Liu, Jiaping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Building envelopes integrating with phase change materials (PCMs) can achieve excellent thermal storage performance, which would benefit the establishment of comfortable indoor thermal environment and the reduction of building energy consumption. In the present paper, the thermal performance of PCMs-based lightweight wallboards integrating PCMs with insulation materials are investigated by comparative experiments. By using two reduce-scale test cells, the experiments are conducted in an artificial climate chamber which is controlled by harmonic and linearly rising/falling temperature changing processes. The comparisons of different PCM layer arrangements and layout areas on the wallboard thermal performance are conducted. Experimental results depict that the PCMs-based lightweight wallboard with PCM layer arrange on interior surface can reduce 32.4% of the temperature fluctuation amplitude and delay the lag time from 2.9 h to 4.1 h compared with the arrangement on exterior surface. To provide a convenient approach for engineers and architects to estimate the thermal performance of PCM envelopes in early design stage, a simple thermal design method is proposed based on harmonic response method and equivalent specific heat capacity principle. The calculation results of interior surface temperature agree well with the experimental results with an 7.7% relative error. The present work could provide validation data for simulation investigations of PCM envelopes and provide references for PCM envelopes thermal design. •Thermal performance of PCMs-based lightweight wallboard with different PCM arrangements are compared quantitatively.•Experiments are conducted in artificial controlled conditions with linearly rising/falling and harmonic temperature processes.•A simple thermal design method of PCM envelopes is developed based on harmonic response method and equivalent specific heat capacity principle.
ISSN:0360-1323
1873-684X
DOI:10.1016/j.buildenv.2018.08.020