Loading…

Voltage induced local hysteretic phase switching in silicon

We report the observation of dc-bias induced 180° phase switching in silicon wafers by local-probe microscopy and spectroscopy. The switching is hysteretic and shows remarkable similarities with polarization switching in ferroelectrics as seen in piezoresponse force microscopy (PFM). This is always...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2014-04, Vol.104 (16)
Main Authors: Sekhon, Jagmeet S., Aggarwal, Leena, Sheet, Goutam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the observation of dc-bias induced 180° phase switching in silicon wafers by local-probe microscopy and spectroscopy. The switching is hysteretic and shows remarkable similarities with polarization switching in ferroelectrics as seen in piezoresponse force microscopy (PFM). This is always accompanied by a hysteretic amplitude vs. voltage curve which resembles the “butterfly loops” for piezoelectric materials. From a detailed analysis of the data obtained under different environmental and experimental conditions, we show that the hysteresis effects in phase and amplitude do not originate from ferro-electricity or piezoelectricity. This further indicates that mere observation of hysteresis effects in PFM does not confirm the existence of ferroelectric and/or piezoelectric ordering in materials. We also show that when samples are mounted on silicon for PFM measurements, the switching properties of silicon may appear on the sample even if the sample thickness is large.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4873386