Loading…

Experimental and theoretical studies of band gap alignment in GaAs1−xBix/GaAs quantum wells

Band gap alignment in GaAs1−xBix/GaAs quantum wells (QWs) was studied experimentally by photoreflectance (PR) and theoretically, ab initio, within the density functional theory in which the supercell based calculations are combined with the alchemical mixing approximation applied to a single atom in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-12, Vol.116 (23)
Main Authors: Kudrawiec, R., Kopaczek, J., Polak, M. P., Scharoch, P., Gladysiewicz, M., Misiewicz, J., Richards, R. D., Bastiman, F., David, J. P. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Band gap alignment in GaAs1−xBix/GaAs quantum wells (QWs) was studied experimentally by photoreflectance (PR) and theoretically, ab initio, within the density functional theory in which the supercell based calculations are combined with the alchemical mixing approximation applied to a single atom in a supercell. In PR spectra, the optical transitions related to the excited states in the QW (i.e., the transition between the second heavy-hole and the second electron subband) were clearly observed in addition to the ground state QW transition and the GaAs barrier transition. This observation is clear experimental evidence that this is a type I QW with a deep quantum confinement in the conduction and valence bands. From the comparison of PR data with calculations of optical transitions in GaAs1−xBix/GaAs QW performed for various band gap alignments, the best agreement between experimental data and theoretical calculations has been found for the valence band offset of 52 ± 5%. A very similar valence band offset was obtained from ab initio calculations. These calculations show that the incorporation of Bi atoms into GaAs host modifies both the conduction and the valence band. For GaAs1−xBix with 0 
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4904740