Loading…

Superparamagnetic properties of carbon nanotubes filled with NiFe2O4 nanoparticles

Multi walled carbon nanotubes (MWCNTs) were successfully synthesized using custom-made 80 nm pore-size alumina templates, and were uniformly filled with nickel ferrite (NFO) nanoparticles of 7.4 ± 1.7 nm diameter using a novel magnetically assisted capillary action method. X-ray diffraction confirme...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2015-05, Vol.117 (17)
Main Authors: Stojak Repa, K., Israel, D., Alonso, J., Phan, M. H., Palmero, E. M., Vazquez, M., Srikanth, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi walled carbon nanotubes (MWCNTs) were successfully synthesized using custom-made 80 nm pore-size alumina templates, and were uniformly filled with nickel ferrite (NFO) nanoparticles of 7.4 ± 1.7 nm diameter using a novel magnetically assisted capillary action method. X-ray diffraction confirmed the inverse spinel phase for the synthesized NFO. Transmission electron microscopy confirms spherical NFO nanoparticles with an average diameter of 7.4 nm inside MWCNTs. Magnetometry indicates that both NFO and NFO-filled MWCNTs present a blocking temperature around 52 K, with similar superparamagnetic-like behavior, and weak dipolar interactions, giving rise to a super-spin-glass-like behavior at low temperatures. These properties along with the uniformity of sub-100 nm structures and the possibility of tunable magnetic response in variable diameter carbon nanotubes make them ideal for advanced biomedical and microwave applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4914952