Loading…

Temperature dependent c-axis hole mobilities in rubrene single crystals determined by time-of-flight

Hole mobilities (μ) in rubrene single crystals (space group Cmca) along the crystallographic c-axis have been investigated as a function of temperature and applied electric field by the time-of-fight method. Measurements demonstrate an inverse power law dependence on temperature, namely, μ=μ0T−n wit...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-03, Vol.106 (11)
Main Authors: Pundsack, Tom J., Haugen, Neale O., Johnstone, Lucas R., Daniel Frisbie, C., Lidberg, Russell L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hole mobilities (μ) in rubrene single crystals (space group Cmca) along the crystallographic c-axis have been investigated as a function of temperature and applied electric field by the time-of-fight method. Measurements demonstrate an inverse power law dependence on temperature, namely, μ=μ0T−n with n = 1.8, from room temperature down to 180 K. At 296 K, the average value of μ was found to be 0.29 cm2/Vs increasing to an average value of 0.70 cm2/Vs at 180 K. Below 180 K a decrease in mobility is observed with further cooling. Overall, these results confirm the anisotropic nature of transport in rubrene crystals as well as the generality of the inverse power law temperature dependence that is observed for field effect mobility measurements in the a-b crystal plane.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4914975