Loading…

Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi1−xCaxFe1−xMnxO3 ceramics

The co-doping of Ca and Mn in respective Bi and Fe-sites of BiFeO3 lattice leads to structural transition from rhombohedral (R3c space group) to orthorhombic (Pbnm space group) crystal symmetry. The tilt angle for anti-phase rotation of the oxygen octahedra of BiFeO3 at room temperature is observed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2015-05, Vol.117 (19)
Main Authors: Kumar, Pawan, Shankhwar, Nisha, Srinivasan, A., Kar, Manoranjan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The co-doping of Ca and Mn in respective Bi and Fe-sites of BiFeO3 lattice leads to structural transition from rhombohedral (R3c space group) to orthorhombic (Pbnm space group) crystal symmetry. The tilt angle for anti-phase rotation of the oxygen octahedra of BiFeO3 at room temperature is observed to be ∼13.8°. It decreases with the increase in the co-doping percentage which suggests the composition-driven structural phase transition. The remnant magnetization for sample with 15% of co-doping becomes about 16 times that of BiFeO3. It may be attributed to the suppression of cycloid spin structure and uncompensated spins at the surface of nanocrystallites. Further increase in co-doping percentage results in the sharp reduction of remnant magnetization due to the dominant contribution from the collinear antiferromagnetic ordering in the Pbnm space group. The Arrott plot analysis clearly indicates the composition-driven crossover from the antiferromagnetic to weak ferromagnetic ordering and vice versa. Electron spin resonance results provide the evidence for the composition-driven phase transitions from an incommensurate spin cycloidal modulated state to one with nearly homogeneous spin order. The band gap (2.17 eV) of BiFeO3 measured using UV-Vis spectra was supported by the resonance Raman spectra.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4921433