Loading…

The Renner-Teller effect in HCCCN+(X̃2Π) studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations

The spin-vibronic energy levels of the cyanoacetylene cation have been measured using the one-photon zero-kinetic energy (ZEKE) photoelectron spectroscopic method. All three degenerate vibrational modes showing vibronic coupling, i.e., Renner-Teller (RT) effect, have been observed. All the splitting...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2015-08, Vol.143 (5)
Main Authors: Dai, Zuyang, Sun, Wei, Wang, Jia, Mo, Yuxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spin-vibronic energy levels of the cyanoacetylene cation have been measured using the one-photon zero-kinetic energy (ZEKE) photoelectron spectroscopic method. All three degenerate vibrational modes showing vibronic coupling, i.e., Renner-Teller (RT) effect, have been observed. All the splitting spin-vibronic energy levels of the fundamental H—C≡C bending vibration (v5) have been determined. The spin-vibronic energy levels of the degenerate vibrational modes have also been calculated using a diabatic model in which the harmonic terms as well as all the second-order vibronic coupling terms are used. The theoretical predictions are in good agreement with the experimental data and are used to assign the ZEKE spectrum. It is found that the RT effects for the H—(CC)—CN bending (v7) and the C—C≡N bending (v6) vibrations are weak, whereas they are strong for the H—C≡C bending (v5) vibration. The cross-mode RT couplings between any of the two degenerate vibrations are strong. The spin-orbit resolved fundamental vibrational energy levels of the C≡N stretching (v2) and C—H stretching (v1) vibrations have also been observed. The spin-orbit energy splitting of the ground state has been determined for the first time as 43 ± 2 cm−1, and the ionization energy of HCCCN is found to be 93 903.5 ± 2 cm−1.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4927005