Loading…

Dense Kondo behavior in the low-temperature resistivity and specific heat for amorphous Ce50Al50 alloy

We measured the low-temperature specific heat Cp, resistivity ρ, and magnetoresistance Δρ(H)/ρ(0) for amorphous Ce50Al50 synthesized by a DC high-rate sputter method. The low-temperature Cp (T < 2 K) decreases rapidly toward 0 K and has no indication of phase transition. The value of γ0 which is...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2018-10, Vol.8 (10), p.101310-101310-5
Main Authors: Ito, Seiya, Seki, Kazuho, Amakai, Yusuke, Murayama, Shigeyuki, Takano, Hideaki, Momono, Naoki, Kuwai, Tomohiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We measured the low-temperature specific heat Cp, resistivity ρ, and magnetoresistance Δρ(H)/ρ(0) for amorphous Ce50Al50 synthesized by a DC high-rate sputter method. The low-temperature Cp (T < 2 K) decreases rapidly toward 0 K and has no indication of phase transition. The value of γ0 which is extrapolated down to 0 K of the Cp/T is 117 mJ/molK2. The temperature dependence of ρ increases with decreasing temperature down to 0.6 K. We found that both a weak localization effect and a coherent Kondo state might be realized in the low-temperature region for the present alloy from the conductivity analysis. Furthermore, in the low-temperature ρ, a T2 term with a very large coefficient A was observed. The ratio of A/γ02 is 0.63 ×10-5 (μΩcm/K2)/(mJ/molK2)2 and is near the value of typical Ce-based heavy-fermion compounds. The magnetoresistances Δρ(H)/ρ(0) at 0.5 K and 2 K are almost constant in the magnetic field region of H < 10 kOe. We considered that the negative magnetoresistance effect is due to the weak localization and the positive magnetoresistance to the heavy-fermion state in the present alloy.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.5045753