Loading…

Study on the compatibility of azo-tetrazolate high-energy materials using DSC

Compatibility is the ability of materials to resist chemical changes when they interact with other materials. Both the compatibility and interaction between energetic materials or between energetic and non-energetic materials are of great importance. Differential scanning calorimetry was performed t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2018-09, Vol.133 (3), p.1481-1490
Main Authors: Yousef, Muntaha A., Hudson, M. Keith, Berry, Brian C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compatibility is the ability of materials to resist chemical changes when they interact with other materials. Both the compatibility and interaction between energetic materials or between energetic and non-energetic materials are of great importance. Differential scanning calorimetry was performed to investigate the compatibility and the interaction between the energetic materials. The thermal characterization of energetic materials is important to indicate their stability as propellants, revealing necessary information regarding their thermal decomposition mechanisms during combustion and storage. The energetic materials include guanidinium azo-tetrazolate (GAT), aminoguanidinium azo-tetrazolate (AGAT), aminoguanidinium azo-tetrazolate monohydrate (AGATH), diaminoguanidinium azo-tetrazolate (DAGAT), triaminoguanidinium azo-tetrazolate (TAGAT), and ammonium azo-tetrazolate (AZT). Azo-tetrazolate salts and their derivatives were synthesized and fully characterized by multinuclear spectroscopy and Fourier transform infrared spectroscopy. The results present good compatibility between GAT–AGATH, GAT–DAGAT, GAT–TAGAT, GAT–AZT, AGAT–DAGAT, and DAGAT–TAGAT. The decomposition of AGATH and DAGAT was increased by adding GAT and TAGAT, respectively. There were poor compatibility between GAT and AGAT and fair compatibility between AGAT and TAGAT, and the mixtures of AGAT–AZT, DAGAT–AZT, and TAGAT–AZT might be hazardous. Adding any other energetic material to GAT accelerates the decomposition temperature of GAT, which may be useful in some applications.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-018-7221-z