Loading…

Electrical properties of extended defects in strain relaxed GeSn

We report the electrical properties of 60° dislocations originating from the +1.2% lattice mismatch between an unintentionally doped, 315 nm thick Ge0.922Sn0.078 layer (58% relaxed) and the underlying Ge substrate, using deep level transient spectroscopy. The 60° dislocations are found to be split i...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2018-07, Vol.113 (2)
Main Authors: Gupta, Somya, Simoen, Eddy, Loo, Roger, Shimura, Yosuke, Porret, Clement, Gencarelli, Federica, Paredis, Kristof, Bender, Hugo, Lauwaert, Johan, Vrielinck, Henk, Heyns, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the electrical properties of 60° dislocations originating from the +1.2% lattice mismatch between an unintentionally doped, 315 nm thick Ge0.922Sn0.078 layer (58% relaxed) and the underlying Ge substrate, using deep level transient spectroscopy. The 60° dislocations are found to be split into Shockley partials, binding a stacking fault. The dislocations exhibit a band-like distribution of electronic states in the bandgap, with the highest occupied defect state at ∼EV + 0.15 eV, indicating no interaction with point defects in the dislocation's strain field. A small capture cross-section of 1.5 × 10−19 cm2 with a capture barrier of 60 meV is observed, indicating a donor-like nature of the defect-states. Thus, these dislocation-states are not the source of unintentional p-type doping in the Ge0.922Sn0.078 layer. Importantly, we show that the resolved 60° dislocation-states act as a source of leakage current by thermally generating minority electrons via the Shockley-Read-Hall mechanism.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5034573