Loading…

Behavior of Ionic Liquids Around Charged Metal Complexes: Investigation of Homogeneous Electron Transfer Reactions Between Metal Complexes in Ionic Liquids

The second-order electron transfer reaction between the photo-excited triplet state of [Zn(TPP)]* (TPP = 5,10,15,20-tetraphenylporphyrin) and [Co(sep)] 3+ (sep = sepulchrate = 1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane) was investigated in three ionic liquids (ILs, 1-R-3-methylimidazolium bis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solution chemistry 2018-06, Vol.47 (6), p.993-1020
Main Authors: Mabe, Takuya, Doseki, Fumiaki, Yagyu, Takeyoshi, Ishihara, Koji, Inamo, Masahiko, Takagi, Hideo D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The second-order electron transfer reaction between the photo-excited triplet state of [Zn(TPP)]* (TPP = 5,10,15,20-tetraphenylporphyrin) and [Co(sep)] 3+ (sep = sepulchrate = 1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane) was investigated in three ionic liquids (ILs, 1-R-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with R = butyl, pentyl, and hexyl) and in acetonitrile. Results of electrochemical and kinetic measurements indicated that ILs dissociate in the vicinity of charged metal complexes and at electrodes, although the dissociated anionic and cationic components of the ILs seem to exist as pairs around the metal complexes. Second-order rate constants for the electron transfer reaction are 1.88 × 10 9 , 3.65 × 10 7 , 2.63 × 10 7 , and 2.01 × 10 7 kg·mol −1 ·s −1 in acetonitrile and in the butyl, pentyl and hexyl ILs, respectively, at 298 K, after correction of the contribution of diffusion. The average slope of the plot of the logarithmic second-order rate constants observed in acetonitrile and ILs against the logarithmic viscosity of each solvent was − 0.84. However, the slope of the same plot was much steeper (− 4.1) when data for only the three ILs were used. Detailed analyses of the experimental results on the basis of the Latner–Levin cross relation and the Marcus theory lead to the conclusion that the solvent properties such as the dielectric constant and refractive index around the polarized/charged transition states are different from those for the bulk ILs: observed self-exchange rate constants did not exhibit the Pekar factor dependence when dielectric constants and refractive indices for bulk ILs are used.
ISSN:0095-9782
1572-8927
DOI:10.1007/s10953-018-0772-6