Loading…

Conceptual design of the tomographic system for simultaneous studying of soft and hard X-ray emission from dense magnetized plasma

The article presents a new approach for investigation of spatial distributions of soft and hard X-rays emitted from dense magnetized plasma. The approach is based on the application of tomographic methods to the X-ray emission reconstruction in a plasma focus (PF) device. Quantitative investigation...

Full description

Saved in:
Bibliographic Details
Published in:Fusion engineering and design 2016-11, Vol.112, p.646-655
Main Authors: Bielecki, J., Wójcik-Gargula, A., Scholz, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The article presents a new approach for investigation of spatial distributions of soft and hard X-rays emitted from dense magnetized plasma. The approach is based on the application of tomographic methods to the X-ray emission reconstruction in a plasma focus (PF) device. Quantitative investigation of the anisotropy of the reconstructed X–ray plasma emissivity may help to explain the nature of fusion reaction mechanisms in a PF device. The aim of this work is to present a conceptual design of a novel dual-energy X-ray emission tomographic system dedicated to the PF-24 plasma focus device. The system, which enables the simultaneous registration of soft and hard X-rays, is composed of three X‐ray pinhole cameras. Each camera is equipped with a pair of 16-element Si photodiode arrays arranged in two layers separated by an aluminum attenuator. The Geant4 code was used to optimize the layout and parameters of the applied detectors. In addition, a method of tomographic reconstruction from a sparse data set provided by the experimental setup has been presented.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2016.04.030