Loading…

Long Latency of Evoked Quantal Transmitter Release from Somata of Locus Coeruleus Neurons in Rat Pontine Slices

The locus coeruleus (LC) harbors a compact group of noradrenergic cell bodies projecting to virtually all parts of the central nervous system. By using combined measurements of amperometry and patch-clamp, quantal vesicle release of noradrenaline (NA) was detected as amperometric spikes, after depol...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (4), p.1401-1406
Main Authors: Huang, H.-P., Wang, S.-R., Yao, W., Zhang, C., Zhou, Y., Chen, X.-W., Zhang, B., Xiong, W., Wang, L.-Y., Zheng, L.-H., Landry, M., Hökfelt, T., Xu, Z.-Q. D., Zhou, Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The locus coeruleus (LC) harbors a compact group of noradrenergic cell bodies projecting to virtually all parts of the central nervous system. By using combined measurements of amperometry and patch-clamp, quantal vesicle release of noradrenaline (NA) was detected as amperometric spikes, after depolarization of the LC neurons. After a pulse depolarization, the average latency of amperometric spikes was 1,870 ms, whereas the latency of glutamate-mediated excitatory postsynaptic currents was 1.6 ms. A substantial fraction of the depolarization-induced amperometric spikes originated from the somata. In contrast to glutamate-mediated excitatory postsynaptic currents, NA secretion was strongly modulated by the action potential frequency (0.5-50 Hz). Somatodendritic NA release from LC upon enhanced cell activity produced autoinhibition of firing and of NA release. We conclude that, in contrast to classic synaptic transmission, quantal NA release from LC somata is characterized by a number of distinct properties, including long latency and high sensitivity to action potential frequency.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0608897104