Loading…

Integrated nonlinear optimization of bioprocesses via linear programming

The problem of integrated design and control of bioprocess plants is considered. A previously presented optimization approach for biochemical systems based on linear programming and modeling using the power law formalism (the Indirect Optimization Method, IOM) is extended. This method is enhanced in...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2003-12, Vol.49 (12), p.3173-3187
Main Authors: Vera, Julio, Torres, Néstor V., Moles, Carmen G., Banga, Julio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of integrated design and control of bioprocess plants is considered. A previously presented optimization approach for biochemical systems based on linear programming and modeling using the power law formalism (the Indirect Optimization Method, IOM) is extended. This method is enhanced in order to take into account both static and dynamic measures, and its use for the optimization of the integrated design of a bioprocess is illustrated. The chosen case study is a wastewater treatment plant, a bioprocess which typically presents controllability problems in real practice due to bad design methodologies. After defining an objective function reflecting both investment costs and “paracosts” (such as stability, flexibility, and controllability), a set of constraints determined by the system components and technical and economical factors is defined. A comparison of the results obtained with this new method and with a global optimization method reveals that, in both cases, significant improvements in both controllability and cost reduction are achieved, although the global method yields somewhat better improvements. The advantages and limitations of both methods are evaluated, concluding that the IOM, through its incorporation to a dynamic process simulator, can be successfully used to obtain, in a quick, inexpensive and interactive way, near‐optimal integrated designs for bioprocess plants.
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.690491217