Loading…

Highly Efficient Self‐Healable and Dual Responsive Cellulose‐Based Hydrogels for Controlled Release and 3D Cell Culture

To face the increasing demand of self‐healing hydrogels with biocompatibility and high performances, a new class of cellulose‐based self‐healing hydrogels are constructed through dynamic covalent acylhydrazone linkages. The carboxyethyl cellulose‐graft‐dithiodipropionate dihydrazide and dibenzaldehy...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2017-10, Vol.27 (40), p.n/a
Main Authors: Yang, Xuefeng, Liu, Guoqiang, Peng, Liao, Guo, Jinhua, Tao, Lei, Yuan, Jinying, Chang, Chunyu, Wei, Yen, Zhang, Lina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To face the increasing demand of self‐healing hydrogels with biocompatibility and high performances, a new class of cellulose‐based self‐healing hydrogels are constructed through dynamic covalent acylhydrazone linkages. The carboxyethyl cellulose‐graft‐dithiodipropionate dihydrazide and dibenzaldehyde‐terminated poly(ethylene glycol) are synthesized, and then the hydrogels are formed from their mixed solutions under 4‐amino‐DL‐phenylalanine (4a‐Phe) catalysis. The chemical structure, as well as microscopic morphologies, gelation times, mechanical and self‐healing performances of the hydrogels are investigated with 1H NMR, Fourier transform infrared spectroscopy, atomic force microscopy, rheological and compression measurements. Their gelation times can be controlled by varying the total polymer concentration or 4a‐Phe content. The resulted hydrogels exhibit excellent self‐healing ability with a high healing efficiency (≈96%) and good mechanical properties. Moreover, the hydrogels display pH/redox dual responsive sol‐gel transition behaviors, and are applied successfully to the controlled release of doxorubicin. Importantly, benefitting from the excellent biocompatibility and the reversibly cross‐linked networks, the hydrogels can function as suitable 3D culture scaffolds for L929 cells, leading to the encapsulated cells maintaining a high viability and proliferative capacity. Therefore, the cellulose‐based self‐healing hydrogels show potential applications in drug delivery and 3D cell culture for tissue engineering. New high‐performance cellulose‐based self‐healing hydrogels are constructed through dynamic acylhydrazone crosslinking under 4‐amino‐dl‐phenylalanine catalysis. These hydrogels have highly tunable gelation time and exhibit pH/redox controlled release behaviors. Importantly, they can serve as suitable 3D culture scaffolds for cells, as a result of their excellent biocompatibility and adaptable dynamic networks.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201703174