Loading…

Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches

In this study, an analysis of elastic residual stress in Inconel® 718 (IN 718) linear friction welds (LFWs) was carried out. In particular, the suitability of LFW for manufacturing and repair of aero engine components was emulated by joining virgin and in-service (extracted from a turbine disk) mate...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-04, Vol.691, p.168-179
Main Authors: Smith, M., Levesque, J.-B., Bichler, L., Sediako, D., Gholipour, J., Wanjara, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, an analysis of elastic residual stress in Inconel® 718 (IN 718) linear friction welds (LFWs) was carried out. In particular, the suitability of LFW for manufacturing and repair of aero engine components was emulated by joining virgin and in-service (extracted from a turbine disk) materials. The evolution in the residual strains and stresses in the heat-affected zone (HAZ), thermomechanically affected zone (TMAZ) and dynamically recrystallized zone (DRX) of the weld was characterized using the neutron diffraction and contour methods. The results provided insight into diverse challenges in quantitative analysis of residual stresses in welded IN 718 using diffraction techniques. Specifically, judicious selection of the beam width, height and stress-free lattice spacing were seen to be crucial to minimize measurement error and increase accuracy. Further, the contour method – a destructive technique relying on capturing the stress relaxation after electrical discharge machining – was used to characterize the residual stress distribution on two-dimensional plane sections of the welds. Both techniques suggested an increasing magnitude of residual stress originating from the base metal that reached a peak at the weld interface. Both methods indicated that the peak magnitude of residual stresses were below the yield stress of IN 718.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2017.03.038