Loading…

Once the Light Touch to the Brain: Cytotoxic Effects of Low-Dose Gamma-Ray, Laser Light, and Visible Light on Rat Neuronal Cell Culture/Isik Bir Kez Beyne Degmeye Gorsun: Sican Noronal Hucre Kulturu Uzerinde Dusuk Doz Gama-Isini, Lazer Isigi ve Gorunur Isigin Sitotoksik Etkileri

Objective: We aimed to evaluate the effects of gamma-ray, laser light, and visible light, which neurons are commonly exposed to during treatment of various cranial diseases, on the viability of neurons. Materials and Methods: Neuronal cell culture was prepared from the frontal cortex of 9 newborn ra...

Full description

Saved in:
Bibliographic Details
Published in:The Eurasian journal of medicine 2016-06, Vol.48 (2), p.76
Main Authors: Cakir, Murteza, Colak, Abdullah, Calikoglu, Cagatay, Taspinar, Numan, Sagsoz, Mustafa Erdem, Kadioglu, Hakan Hadi, Hacimuftuoglu, Ahmet, Seven, Sabriye
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: We aimed to evaluate the effects of gamma-ray, laser light, and visible light, which neurons are commonly exposed to during treatment of various cranial diseases, on the viability of neurons. Materials and Methods: Neuronal cell culture was prepared from the frontal cortex of 9 newborn rats. Cultured cells were irradiated with gamma-ray for 1-10 min by [sup.152]Eu, [sup.241]Am, and [sup.132]Ba isotopes, visible light for 1-160 min, and laser light for 0.2-2 seconds. The MTT tetrazolium reduction assay was used to assess the number of viable cells in the neuronal cell cultures. Wavelength dispersive X-ray fluorescence spectrometer was used to determine Na, K, and Ca levels in cellular fluid obtained from neuronal cell culture plaques. Results: Under low-dose radiation with [sup.152]Eu, [sup.241]Am, and [sup.132]Ba isotopes, cell viability insignificantly decreased with time (p>0.05). On the other hand, exposure to visible light produced statistically significant decrease in cell viability at both short- (1-10 min) and long-term (20-160 min). Cell viability did not change with 2 seconds of laser exposure. Na, K, and Ca levels significantly decreased with gamma-ray and visible light. The level of oxidative stress markers significantly changed with gamma-ray. Conclusion: In conclusion, while low dose gamma-ray has slight to moderate apoptotic effect in neuronal cell cultures by oxidative stress, long-term visible light induces remarkable apoptosis and cell death. Laser light has no significant effect on neurons. Further genetic studies are needed to clarify the chronic effect of visible light on neuronal development and functions. Keywords: Neuron, cytotoxicity, cell culture, apoptosis, laser light, radiation Amac: Amacimiz, cesitli kranial hastaliklarin tedavisi esnasinda noronlarin siklikla maruz kaldigi gama isini, laser isigi ve gorunur isigin etkilerinin degerlendirilmesidir. Gerec ve Yontem: Noronal hucre kulturu 9 yeni dogan sican on korteksinde hazirlandi. Kultur hucreleri [sup.152]Eu, [sup.241]Am ve [sup.132]Ba izotoplarinin gama isinlari ile 1-10 dakika boyunca, gorunur isik ile 1-160 dakika boyunca ve lazer isini ile 0,2-2 saniye boyunca isinlandi. MTT tetrazolium azalmasinin olculmesi, noronal hucre kulturlerindeki canli hucre sayisini degerlendirmek icin kullanildi. Dalgaboyu dagilimli X-isini floresans spektrometresi, noronal hucre kulturu plakalardan saglanan hucresel sivi Na, K, Ca ve seviyelerini belirlemek icin kullanildi. Bulgular
ISSN:1308-8734
1308-8742
DOI:10.5152/eurasianjmed.2015.0304