Loading…
Size Effect of Piezoelectricity in ZnO Nanowires: A First-Principles Study
Piezoelectric properties of ZnO nanowires orientated along [0001] are investigated via density functional theory (DFT). A new method to calculate the volume of nanowires was proposed, which is crucial to the value of piezoelectric coefficients. Results show that the axial effective piezoelectric coe...
Saved in:
Published in: | Key engineering materials 2015-05, Vol.645-646, p.275-280 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Piezoelectric properties of ZnO nanowires orientated along [0001] are investigated via density functional theory (DFT). A new method to calculate the volume of nanowires was proposed, which is crucial to the value of piezoelectric coefficients. Results show that the axial effective piezoelectric coefficients are 29.99 Cm-2, 25.93 Cm-2, 22.82 Cm-2 for ZnO nanowires with diameters of about 0.6 nm, 1.2 nm, 1.8 nm, which are considerably larger than that of the bulk (20.19Cm-2). It is found that the change in volume during the strain played a dominated role in size effects. This work helps to gain a deeper understanding of the piezoelectric size effects in ZnO nanowires. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.645-646.275 |