Loading…

Removal of Tartrazine From Water by Adsorption with Electrochemical Regeneration

An innovative process has been developed at University of the Manchester in order to remove organic contaminants from wastewater using graphite intercalation compounds (GICs) as adsorbents with electrochemical regeneration. The present study has demonstrated the removal of tartrazine, from water by...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering communications 2015-10, Vol.202 (10), p.1280-1288
Main Authors: Hussain, S. N., Asghar, H. M. A, Sattar, H., Brown, N. W., Roberts, E. P. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An innovative process has been developed at University of the Manchester in order to remove organic contaminants from wastewater using graphite intercalation compounds (GICs) as adsorbents with electrochemical regeneration. The present study has demonstrated the removal of tartrazine, from water by adsorption and electrochemical regeneration. The adsorption of tartrazine onto GIC adsorbent was shown to be a quick process, however, with extremely low adsorption capacity compared to porous adsorbents. Low adsorption capacity of the adsorbent is being compensated by rapid electrochemical regeneration associated with low energy consumption that makes the process cost-effective. Regeneration efficiency of around 100% could be obtained in an electrochemical cell by passing a charge of 18 C g −1 for 18 min through a 10-mm thick adsorbent bed. A series of adsorption and regeneration cycles showed that there was little loss in adsorbent capacity, demonstrating that tartrazine loaded GIC adsorbent could be effectively regenerated electrochemically.
ISSN:0098-6445
1563-5201
DOI:10.1080/00986445.2014.921620