Loading…

Non-thermal fixed point in a holographic superfluid

A bstract We study the far-from-equilibrium dynamics of a (2 + 1)-dimensional super-fluid at finite temperature and chemical potential using its holographic description in terms of a gravitational system in 3 + 1 dimensions. Starting from various initial conditions corresponding to ensembles of vort...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2015-05, Vol.2015 (5), p.1, Article 70
Main Authors: Ewerz, Carlo, Gasenzer, Thomas, Karl, Markus, Samberg, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract We study the far-from-equilibrium dynamics of a (2 + 1)-dimensional super-fluid at finite temperature and chemical potential using its holographic description in terms of a gravitational system in 3 + 1 dimensions. Starting from various initial conditions corresponding to ensembles of vortex defects we numerically evolve the system to long times. At intermediate times the system exhibits Kolmogorov scaling the emergence of which depends on the choice of initial conditions. We further observe a universal late- time regime in which the occupation spectrum and different length scales of the superfluid exhibit scaling behaviour. We study these scaling laws in view of superfluid turbulence and interpret the universal late-time regime as a non-thermal fixed point of the dynamical evolution. In the holographic superfluid the non-thermal fixed point can be understood as a stationary point of the classical equations of motion of the dual gravitational description.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP05(2015)070