Loading…

Tapped-Inductor Buck HB-LED AC-DC Driver Operating in Boundary Conduction Mode for Replacing Incandescent Bulb Lamps

High-brightness light-emitting diodes (HB-LEDs) are recognized as being potential successors of incandescent bulb lamps due to their high luminous efficiency and long lifespan. To achieve these advantages, HB-LED ballast must be durable and efficient. Furthermore, for this specific application, ac-d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2012-10, Vol.27 (10), p.4329-4337
Main Authors: Lamar, D. G., Fernandez, M., Arias, M., Hernando, M. M., Sebastian, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-brightness light-emitting diodes (HB-LEDs) are recognized as being potential successors of incandescent bulb lamps due to their high luminous efficiency and long lifespan. To achieve these advantages, HB-LED ballast must be durable and efficient. Furthermore, for this specific application, ac-dc HB-LED ballast requires a high-step-down ratio, high power factor and low cost. This paper presents a tapped-inductor buck power factor corrector (PFC) operating in boundary conduction mode design for replacing incandescent bulb lamps. This low-cost solution presents a suitable high-step-down ratio without galvanic isolation in order to produce an output voltage of about 20 V from line voltage. In addition, the tapped-inductor buck PFC maintains high efficiency in comparison to other one stage solutions widely used to design low-cost ac-dc HB-LED drivers (e.g., flyback PFCs). Static analysis, input current distortion analysis, and an average small signal model of the tapped-inductor buck PFC have been implemented in this paper both to check the validity of the proposed solution and to provide a suitable design procedure of the ac-dc HB-LED driver. Finally, a 12-W experimental prototype was developed to validate the theoretical results presented.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2012.2190756