Loading…

Calcium Currents Recorded from a Vertebrate Presynaptic Nerve Terminal are Resistant to the Dihydropyridine Nifedipine

The influx of Ca ions into the presynaptic nerve terminal through ion channels is a key link between the action potential and the release of chemical transmitters. It is not clear, however, which types of Ca channel are involved in neurosecretion at vertebrate synapses. In particular, there is disag...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1990-12, Vol.87 (24), p.9683-9687
Main Authors: Stanley, Elis F., Atrakchi, Aisar H.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influx of Ca ions into the presynaptic nerve terminal through ion channels is a key link between the action potential and the release of chemical transmitters. It is not clear, however, which types of Ca channel are involved in neurosecretion at vertebrate synapses. In particular, there is disagreement as to whether these channels are sensitive to dihydropyridine blockers, characteristic of L-type Ca channels. We have used the chicken ciliary ganglion calyx synapse to test the effect of the dihydropyridine nifedipine on Ca current recorded directly from a cholinergic presynaptic nerve terminal. We used a control neuron to define the experimental conditions under which L-type Ca channels are blocked by 10 μM nifedipine. We then tested the effect of the dihydropyridine on Ca currents recorded from the presynaptic terminal using the same conditions. Nifedipine did not reduce the calyx Ca current nor did it block chemical transmission through the ganglion. The lack of effect of the dihydropyridine was not due to restricted access since ω-conotoxin GVIA, a peptide toxin that blocks transmission at this synapse, rapidly blocked the calyx Ca current. Thus, the predominant Ca channel in this presynaptic nerve terminal is not dihydropyridine sensitive and, hence, cannot be characterized as L-type.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.24.9683