Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors

The conformationally restricted, cyclic, disulfide-containing, enkephalin analogs [2-D-penicillamine, 5-L-penicillamine]enkephalin [(D-Pen2,L-Pen5]enkephalin) and [2-D-penicillamine, 5-D-penicillamine]enkephalin [(D-Pen2,D-Pen5]enkephalin) were synthesized by solid-phase methods. Selectivities of th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1983-10, Vol.80 (19), p.5871-5874
Main Authors: Mosberg, H I, Hurst, R, Hruby, V J, Gee, K, Yamamura, H I, Galligan, J J, Burks, T F
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The conformationally restricted, cyclic, disulfide-containing, enkephalin analogs [2-D-penicillamine, 5-L-penicillamine]enkephalin [(D-Pen2,L-Pen5]enkephalin) and [2-D-penicillamine, 5-D-penicillamine]enkephalin [(D-Pen2,D-Pen5]enkephalin) were synthesized by solid-phase methods. Selectivities of these analogs for a single class of opioid receptor were investigated by examining relative potencies in the mouse vas deferens assay, in which the functional receptor is the delta receptor, versus the guinea pig ileum assay, in which the mu receptor is the functional receptor, and by determining their relative abilities to displace the prototypical delta receptor ligand [D-Ala2, D-Leu5]enkephalin and the prototypical mu receptor ligand naloxone from rat brain membrane preparations. Based on these comparisons [D-Pen2,L-Pen5]- and [D-Pen2,D-Pen5]enkephalin exhibited delta receptor selectivities of 1,088 and 3,164, respectively, in the bioassays, and 371 and 175, respectively, in the binding assays. Compared with the previously reported delta receptor selective analogs, [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, and [D-Thr2,Leu5,Thr6]enkephalin, the bis-Pen-containing analogs provide an order of magnitude increase in delta receptor selectivity.
ISSN:0027-8424
1091-6490