Loading…

Induction of flight via midbrain projections to the cuneiform nucleus

The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low and high i...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-02, Vol.18 (2), p.e0281464-e0281464
Main Authors: Tsang, Emmy, Orlandini, Camilla, Sureka, Rahul, Crevenna, Alvaro H, Perlas, Emerald, Prankerd, Izzie, Masferrer, Maria E, Gross, Cornelius T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-fa48df3fae6f14265a5195034ce6f1dedfb8b9a04d4e371add18321bd7f01d9b3
cites cdi_FETCH-LOGICAL-c526t-fa48df3fae6f14265a5195034ce6f1dedfb8b9a04d4e371add18321bd7f01d9b3
container_end_page e0281464
container_issue 2
container_start_page e0281464
container_title PloS one
container_volume 18
creator Tsang, Emmy
Orlandini, Camilla
Sureka, Rahul
Crevenna, Alvaro H
Perlas, Emerald
Prankerd, Izzie
Masferrer, Maria E
Gross, Cornelius T
description The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low and high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal grey to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.
doi_str_mv 10.1371/journal.pone.0281464
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2777358883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43567f5e07384eb3b16487d3750db3ca</doaj_id><sourcerecordid>2777404331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-fa48df3fae6f14265a5195034ce6f1dedfb8b9a04d4e371add18321bd7f01d9b3</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAO-9GXXZG6-5kWQ0upCwRd9DvnczTKTrMlMwX_vbHdaWvEp4eacc88Jp2neE7wmIMjnfZ5K0v36kJNf41YSyumL5px00K54i-Hlk_tZ86bWPcYMJOevmzPgomOc8_PmepPcZMeYE8oBhT5udyO6ixoN0ZmiY0KHkvf-HlHRmNG488hOyceQy4DSZHs_1bfNq6D76t8t50Xz6-b659X31e2Pb5urr7cry1o-roKm0gUI2vNAaMuZZqRjGKg9Dpx3wUjTaUwd9XNE7RyR0BLjRMDEdQYumo8n3UOfq1p-oKpWCAFMSgkzYnNCuKz36lDioMsflXVU94NctkqXMc6uFQXGRWAeC5DUGzCEUykcCIadAatnrS_LtskM3lmfxqL7Z6LPX1LcqW2-U10HFMTRzOUiUPLvyddRDbFa3_c6-TydfFNMAcgM_fQP9P_p6AllS661-PBohmB1bMUDSx1boZZWzLQPT4M8kh5qAH8BKsi2bw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777358883</pqid></control><display><type>article</type><title>Induction of flight via midbrain projections to the cuneiform nucleus</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tsang, Emmy ; Orlandini, Camilla ; Sureka, Rahul ; Crevenna, Alvaro H ; Perlas, Emerald ; Prankerd, Izzie ; Masferrer, Maria E ; Gross, Cornelius T</creator><contributor>Siegel, Allan</contributor><creatorcontrib>Tsang, Emmy ; Orlandini, Camilla ; Sureka, Rahul ; Crevenna, Alvaro H ; Perlas, Emerald ; Prankerd, Izzie ; Masferrer, Maria E ; Gross, Cornelius T ; Siegel, Allan</creatorcontrib><description>The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low and high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal grey to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0281464</identifier><identifier>PMID: 36795666</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Defensive behavior ; Electric Stimulation ; Electrical stimuli ; Escape behavior ; Flight ; Flight behavior ; Freezing ; Gene expression ; Laboratories ; Localization ; Medicine and Health Sciences ; Mesencephalon ; Midbrain Reticular Formation ; Neurons ; Neurons - physiology ; Periaqueductal Gray ; Periaqueductal gray area ; Quality control ; Rats ; Rats, Wistar ; Research and Analysis Methods ; Social Sciences ; Stimulation ; Viruses</subject><ispartof>PloS one, 2023-02, Vol.18 (2), p.e0281464-e0281464</ispartof><rights>Copyright: © 2023 Tsang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2023 Tsang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Tsang et al 2023 Tsang et al</rights><rights>2023 Tsang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-fa48df3fae6f14265a5195034ce6f1dedfb8b9a04d4e371add18321bd7f01d9b3</citedby><cites>FETCH-LOGICAL-c526t-fa48df3fae6f14265a5195034ce6f1dedfb8b9a04d4e371add18321bd7f01d9b3</cites><orcidid>0000-0001-9129-1322 ; 0000-0002-6743-5266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2777358883/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2777358883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27957,27958,37047,37048,44625,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36795666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Siegel, Allan</contributor><creatorcontrib>Tsang, Emmy</creatorcontrib><creatorcontrib>Orlandini, Camilla</creatorcontrib><creatorcontrib>Sureka, Rahul</creatorcontrib><creatorcontrib>Crevenna, Alvaro H</creatorcontrib><creatorcontrib>Perlas, Emerald</creatorcontrib><creatorcontrib>Prankerd, Izzie</creatorcontrib><creatorcontrib>Masferrer, Maria E</creatorcontrib><creatorcontrib>Gross, Cornelius T</creatorcontrib><title>Induction of flight via midbrain projections to the cuneiform nucleus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low and high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal grey to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Defensive behavior</subject><subject>Electric Stimulation</subject><subject>Electrical stimuli</subject><subject>Escape behavior</subject><subject>Flight</subject><subject>Flight behavior</subject><subject>Freezing</subject><subject>Gene expression</subject><subject>Laboratories</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Mesencephalon</subject><subject>Midbrain Reticular Formation</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Periaqueductal Gray</subject><subject>Periaqueductal gray area</subject><subject>Quality control</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Stimulation</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAO-9GXXZG6-5kWQ0upCwRd9DvnczTKTrMlMwX_vbHdaWvEp4eacc88Jp2neE7wmIMjnfZ5K0v36kJNf41YSyumL5px00K54i-Hlk_tZ86bWPcYMJOevmzPgomOc8_PmepPcZMeYE8oBhT5udyO6ixoN0ZmiY0KHkvf-HlHRmNG488hOyceQy4DSZHs_1bfNq6D76t8t50Xz6-b659X31e2Pb5urr7cry1o-roKm0gUI2vNAaMuZZqRjGKg9Dpx3wUjTaUwd9XNE7RyR0BLjRMDEdQYumo8n3UOfq1p-oKpWCAFMSgkzYnNCuKz36lDioMsflXVU94NctkqXMc6uFQXGRWAeC5DUGzCEUykcCIadAatnrS_LtskM3lmfxqL7Z6LPX1LcqW2-U10HFMTRzOUiUPLvyddRDbFa3_c6-TydfFNMAcgM_fQP9P_p6AllS661-PBohmB1bMUDSx1boZZWzLQPT4M8kh5qAH8BKsi2bw</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Tsang, Emmy</creator><creator>Orlandini, Camilla</creator><creator>Sureka, Rahul</creator><creator>Crevenna, Alvaro H</creator><creator>Perlas, Emerald</creator><creator>Prankerd, Izzie</creator><creator>Masferrer, Maria E</creator><creator>Gross, Cornelius T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9129-1322</orcidid><orcidid>https://orcid.org/0000-0002-6743-5266</orcidid></search><sort><creationdate>20230216</creationdate><title>Induction of flight via midbrain projections to the cuneiform nucleus</title><author>Tsang, Emmy ; Orlandini, Camilla ; Sureka, Rahul ; Crevenna, Alvaro H ; Perlas, Emerald ; Prankerd, Izzie ; Masferrer, Maria E ; Gross, Cornelius T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-fa48df3fae6f14265a5195034ce6f1dedfb8b9a04d4e371add18321bd7f01d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Defensive behavior</topic><topic>Electric Stimulation</topic><topic>Electrical stimuli</topic><topic>Escape behavior</topic><topic>Flight</topic><topic>Flight behavior</topic><topic>Freezing</topic><topic>Gene expression</topic><topic>Laboratories</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Mesencephalon</topic><topic>Midbrain Reticular Formation</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Periaqueductal Gray</topic><topic>Periaqueductal gray area</topic><topic>Quality control</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Stimulation</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsang, Emmy</creatorcontrib><creatorcontrib>Orlandini, Camilla</creatorcontrib><creatorcontrib>Sureka, Rahul</creatorcontrib><creatorcontrib>Crevenna, Alvaro H</creatorcontrib><creatorcontrib>Perlas, Emerald</creatorcontrib><creatorcontrib>Prankerd, Izzie</creatorcontrib><creatorcontrib>Masferrer, Maria E</creatorcontrib><creatorcontrib>Gross, Cornelius T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsang, Emmy</au><au>Orlandini, Camilla</au><au>Sureka, Rahul</au><au>Crevenna, Alvaro H</au><au>Perlas, Emerald</au><au>Prankerd, Izzie</au><au>Masferrer, Maria E</au><au>Gross, Cornelius T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of flight via midbrain projections to the cuneiform nucleus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-02-16</date><risdate>2023</risdate><volume>18</volume><issue>2</issue><spage>e0281464</spage><epage>e0281464</epage><pages>e0281464-e0281464</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Competing Interests: The authors have declared that no competing interests exist.</notes><abstract>The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low and high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal grey to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36795666</pmid><doi>10.1371/journal.pone.0281464</doi><orcidid>https://orcid.org/0000-0001-9129-1322</orcidid><orcidid>https://orcid.org/0000-0002-6743-5266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-02, Vol.18 (2), p.e0281464-e0281464
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2777358883
source Publicly Available Content Database; PubMed Central
subjects Animals
Biology and Life Sciences
Defensive behavior
Electric Stimulation
Electrical stimuli
Escape behavior
Flight
Flight behavior
Freezing
Gene expression
Laboratories
Localization
Medicine and Health Sciences
Mesencephalon
Midbrain Reticular Formation
Neurons
Neurons - physiology
Periaqueductal Gray
Periaqueductal gray area
Quality control
Rats
Rats, Wistar
Research and Analysis Methods
Social Sciences
Stimulation
Viruses
title Induction of flight via midbrain projections to the cuneiform nucleus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T01%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20flight%20via%20midbrain%20projections%20to%20the%20cuneiform%20nucleus&rft.jtitle=PloS%20one&rft.au=Tsang,%20Emmy&rft.date=2023-02-16&rft.volume=18&rft.issue=2&rft.spage=e0281464&rft.epage=e0281464&rft.pages=e0281464-e0281464&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0281464&rft_dat=%3Cproquest_plos_%3E2777404331%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-fa48df3fae6f14265a5195034ce6f1dedfb8b9a04d4e371add18321bd7f01d9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777358883&rft_id=info:pmid/36795666&rfr_iscdi=true