Loading…

A rapid, specific, extraction-less, and cost-effective RT-LAMP test for the detection of SARS-CoV-2 in clinical specimens

In 2019 a newly identified coronavirus, designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly from the epicenter in Wuhan (China) to more than 150 countries around the world, causing the Coronavirus disease 2019 (COVID-19) pandemic. In this study, we describe...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-04, Vol.17 (4), p.e0266703-e0266703
Main Authors: Marino, Francesco Elia, Proffitt, Eric, Joseph, Eugene, Manoharan, Arun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 2019 a newly identified coronavirus, designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly from the epicenter in Wuhan (China) to more than 150 countries around the world, causing the Coronavirus disease 2019 (COVID-19) pandemic. In this study, we describe an extraction-less method based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) intended for the rapid qualitative detection of nucleic acid from SARS-CoV-2 in upper respiratory specimens, including oropharyngeal and nasopharyngeal swabs, anterior nasal and mid-turbinate nasal swabs, nasopharyngeal washes/aspirates or nasal aspirates as well as bronchoalveolar lavage (BAL) from individuals suspected of COVID-19 by their healthcare provider. The assay's performance was evaluated and compared to an RT quantitative PCR-based assay (FDA-approved). With high sensitivity, specificity, and bypassing the need for RNA extraction, the RT-LAMP Rapid Detection assay is a valuable and fast test for an accurate and rapid RNA detection of the SARS-CoV-2 virus and potentially other pathogens. Additionally, the versatility of this test allows its application in virtually every laboratory setting and remote location where access to expensive laboratory equipment is a limiting factor for testing during pandemic crises.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0266703