Loading…

Assessing the reliability and degradation of 10-35 years field-aged PV modules

The objective of this study was to conduct a reliability analysis on photovoltaic (PV) modules from the oldest PV installation site in Pakistan. Four sets of modules; Type A & B (30 years old), Type C (10 years old), and Type D (35 years old) were identified for this analysis. It has been observ...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-01, Vol.17 (1), p.e0261066
Main Authors: Noman, Muhammad, Tu, Shanshan, Ahmad, Shahab, Zafar, Fahad Ullah, Khan, Haseeb Ahmad, Rehman, Sadaqat Ur, Waqas, Muhammad, Khan, Adnan Daud, Rehman, Obaid Ur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to conduct a reliability analysis on photovoltaic (PV) modules from the oldest PV installation site in Pakistan. Four sets of modules; Type A & B (30 years old), Type C (10 years old), and Type D (35 years old) were identified for this analysis. It has been observed that modules have shown degradation after working for a good number of years in the field. Comparing with nameplate data (available for Type B & C only), a drop of 28.68% and 2.99 percentage points (pp) was observed in the output power (Pmax) and efficiency (Eff.) respectively for Type B, while a drop of 22.21% and 4.05 pp was observed in Pmax and Eff. respectively for Type C. A greater drop in ISC and Pmax was observed in Type B, which is attributed to severe browning of EVA in them. While the greater drop in Pmax, in case of Type C, is attributed to the poor quality of materials used. Amongst the different defects observed, the junction box defects which include cracking and embrittlement, etc., and backsheet defects which include discoloration, delamination and cracking, etc. were found in all four types of modules. Other defects include browning of EVA, observed in Type B and D, and corrosion of frame and electrical wires, found in Type A, B, and D. This first-ever study will provide valuable information in understanding the degradation mechanism and henceforth, improving the long term reliability of PV modules in the humid-subtropical conditions of Pakistan.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0261066