Loading…

An inhibitory compound produced by a soil isolate of Rhodococcus has strong activity against the veterinary pathogen R. equi

Complete genome sequencing of dozens of strains of the soil bacterium Rhodococcus has revealed the presence of many cryptic biosynthetic gene clusters, presumably dedicated to the production of small molecules. This has sparked a renewed interest in this underexplored member of the Actinobacteria as...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-12, Vol.13 (12), p.e0209275-e0209275
Main Authors: Ward, Amber L, Reddyvari, Pushpavathi, Borisova, Ralitsa, Shilabin, Abbas G, Lampson, Bert C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Complete genome sequencing of dozens of strains of the soil bacterium Rhodococcus has revealed the presence of many cryptic biosynthetic gene clusters, presumably dedicated to the production of small molecules. This has sparked a renewed interest in this underexplored member of the Actinobacteria as a potential source of new bioactive compounds. Reported here is the discovery of a potent inhibitory molecule produced by a newly isolated strain of Rhodococcus, strain MTM3W5.2. This small inhibitory molecule shows strong activity against all Rhodococcus species tested, including the veterinary pathogen R. equi, and some closely related genera. It is not active against other Gram positive or Gram negative bacteria. A screen of random transposon mutants identified a gene required to produce this inhibitory compound. This gene is a large multi-domain, type I polyketide synthase that is part of a very large multi-gene biosynthetic gene cluster in the chromosome of strain MTM3W5.2. The high resolution mass spectrum of a major chromatogram peak from a broth culture extract of MTM3W5.2 shows the presence of a compound at m/z 911.5490 atomic mass units. This compound is not detected in the culture extracts from a non-producing mutant strain of MTM3W5.2. A large gene cluster containing at least 14 different type I polyketide synthase genes is proposed to be required to synthesize this antibiotic-like compound.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0209275